M463 Homework 4

Enrique Areyan

June 21, 2013
(1.5) \#4 Consider the following events:
$T_{0}=\{$ Transmitter sends 0$\}, \quad R_{0}=\{$ Receiver concludes that a 0 was sent $\}$
$T_{1}=\left\{\right.$ Transmitter sends 1\}, $\quad R_{1}=\{$ Receiver concludes that a 1 was sent $\}$
Assume that $P\left(R_{0} \mid T_{0}\right)=0.99, P\left(R_{1} \mid T_{1}\right)=0.98$, and $P\left(T_{1}\right)=0.5$. Then:

a) The probability of a transmission error given R_{1} is:

$$
P\left(T_{0} \mid R_{1}\right)=\frac{P\left(T_{0} \cap R_{1}\right)}{P\left(R_{1}\right)}=\frac{P\left(T_{0} \cap R_{1}\right)}{P\left(\left(T_{0} \cap R_{1}\right) \cup\left(T_{1} \cap R_{1}\right)\right)}=\frac{0.005}{0.005+0.49}=\frac{0.005}{0.495}=0.010101
$$

b) The overall probability of a transmission error is:

$$
P\left(\left(R_{0} \cap T_{1}\right) \cup\left(R_{1} \cap T_{0}\right)\right)=P\left(T_{0}\right) \cdot P\left(R_{1} \mid T_{0}\right)+P\left(T_{1}\right) \cdot P\left(R_{0} \mid T_{1}\right)=0.5 \cdot 0.01+0.5 \cdot 0.02=0.015
$$

Now, assume that $P\left(R_{0} \mid T_{0}\right)=0.99, P\left(R_{1} \mid T_{1}\right)=0.98$, and $P\left(T_{1}\right)=0.8$. Then:

a) The probability of a transmission error given R_{1} is:

$$
P\left(T_{0} \mid R_{1}\right)=\frac{P\left(T_{0} \cap R_{1}\right)}{P\left(R_{1}\right)}=\frac{P\left(T_{0} \cap R_{1}\right)}{P\left(\left(T_{0} \cap R_{1}\right) \cup\left(T_{1} \cap R_{1}\right)\right)}=\frac{0.002}{0.002+0.784}=\frac{0.002}{0.786}=0.002544
$$

b) The overall probability of a transmission error is:

$$
P\left(\left(R_{0} \cap T_{1}\right) \cup\left(R_{1} \cap T_{0}\right)\right)=P\left(T_{0}\right) \cdot P\left(R_{1} \mid T_{0}\right)+P\left(T_{1}\right) \cdot P\left(R_{0} \mid T_{1}\right)=0.2 \cdot 0.01+0.8 \cdot 0.02=0.018
$$

